Not quite, and an interesting story that fits these engineering maxims better than you might think.
An analog channel with the bandwidth and SNR characteristics of a landline phone line has (IIRC) a Shannon capacity of 30-something kbit/s, which was closely approached with V.34, which used trellis coded modulation plus basically every other coding and equalization mechanism they knew of at the time to get to 33.6kb/s on a good day.
But... by the 80s or so the phone system was only analog for the "last mile" to the home - the rest of the system was digital, sending 8-bit samples (using logarithmic mu-law encoding) at a sampling rate of 8000 samples/s, and if you had a bunch of phone lines coming into a facility you could get those lines delivered over a digital T1 link.
Eventually someone realized that if your ISP-side modem directly outputs digital audio, the downstream channel capacity is significantly higher - in theory the limit is probably 64000 bit/s, i.e. the bit rate of the digital link, although V.90 could only achieve about 56000 b/s in theory, and more like 53kb/s in practice. (in particular, the FCC limited the total signal power, which means not all 64000 combinations of bits in a second of audio would be allowable)
I worked with modem modulation folks when I was a co-op student in the mid-80s. They had spent their lives thinking about the world in terms of analog channels, and it took some serious out-of-the-box thinking on someone's part to realize that the channel was no longer analog, and that you could take advantage of that.
A few years later those same folks all ended up working on cable modems, and it was back to the purely analog world again.
Akin's Laws of Spacecraft Design [pdf] (2011)
https://www.ece.uvic.ca/~elec399/201409/Akin%27s%20Laws%20of%20Spacecraft%20Design.pdf